Package: timetk 2.9.0
timetk: A Tool Kit for Working with Time Series
Easy visualization, wrangling, and feature engineering of time series data for forecasting and machine learning prediction. Consolidates and extends time series functionality from packages including 'dplyr', 'stats', 'xts', 'forecast', 'slider', 'padr', 'recipes', and 'rsample'.
Authors:
timetk_2.9.0.tar.gz
timetk_2.9.0.zip(r-4.5)timetk_2.9.0.zip(r-4.4)timetk_2.9.0.zip(r-4.3)
timetk_2.9.0.tgz(r-4.4-any)timetk_2.9.0.tgz(r-4.3-any)
timetk_2.9.0.tar.gz(r-4.5-noble)timetk_2.9.0.tar.gz(r-4.4-noble)
timetk_2.9.0.tgz(r-4.4-emscripten)timetk_2.9.0.tgz(r-4.3-emscripten)
timetk.pdf |timetk.html✨
timetk/json (API)
NEWS
# Install 'timetk' in R: |
install.packages('timetk', repos = c('https://business-science.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/business-science/timetk/issues
- FANG - Stock prices for the "FANG" stocks.
- bike_sharing_daily - Daily Bike Sharing Data
- m4_daily - Sample of 4 Daily Time Series Datasets from the M4 Competition
- m4_hourly - Sample of 4 Hourly Time Series Datasets from the M4 Competition
- m4_monthly - Sample of 4 Monthly Time Series Datasets from the M4 Competition
- m4_quarterly - Sample of 4 Quarterly Time Series Datasets from the M4 Competition
- m4_weekly - Sample of 4 Weekly Time Series Datasets from the M4 Competition
- m4_yearly - Sample of 4 Yearly Time Series Datasets from the M4 Competition
- taylor_30_min - Half-hourly electricity demand
- walmart_sales_weekly - Sample Time Series Retail Data from the Walmart Recruiting Store Sales Forecasting Competition
- wikipedia_traffic_daily - Sample Daily Time Series Data from the Web Traffic Forecasting (Wikipedia) Competition
coercioncoercion-functionsdata-miningdplyrforecastforecastingforecasting-modelsmachine-learningseries-decompositionseries-signaturetibbletidytidyquanttidyversetimetime-seriestimeseries
Last updated 11 months agofrom:ba787084ce. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 30 2024 |
R-4.5-win | NOTE | Oct 30 2024 |
R-4.5-linux | NOTE | Oct 30 2024 |
R-4.4-win | NOTE | Oct 30 2024 |
R-4.4-mac | NOTE | Oct 30 2024 |
R-4.3-win | NOTE | Oct 30 2024 |
R-4.3-mac | NOTE | Oct 30 2024 |
Exports::=.data%-time%%+time%%||%add_timeanomalizeas_labelas_nameauto_lambdabetween_timebox_cox_inv_vecbox_cox_veccondense_perioddiff_inv_vecdiff_vecenquoenquosexprfilter_by_timefilter_periodfourier_vecfuture_frameget_tk_time_scale_templatehas_timetk_idxis_date_classlag_veclead_veclog_interval_inv_veclog_interval_vecmutate_by_timenormalize_inv_vecnormalize_vecpad_by_timeparse_date2parse_datetime2plot_acf_diagnosticsplot_anomaliesplot_anomalies_cleanedplot_anomalies_decompplot_anomaly_diagnosticsplot_seasonal_diagnosticsplot_stl_diagnosticsplot_time_seriesplot_time_series_boxplotplot_time_series_cv_planplot_time_series_regressionset_tk_time_scale_templateslice_periodslidifyslidify_vecsmooth_vecstandardize_inv_vecstandardize_vecstep_box_coxstep_diffstep_fourierstep_holiday_signaturestep_log_intervalstep_slidifystep_slidify_augmentstep_smoothstep_timeseries_signaturestep_ts_cleanstep_ts_imputestep_ts_padsubtract_timesummarise_by_timesummarize_by_timesymsymstime_series_cvtime_series_splittk_acf_diagnosticstk_anomaly_diagnosticstk_augment_differencestk_augment_fouriertk_augment_holiday_signaturetk_augment_lagstk_augment_leadstk_augment_slidifytk_augment_timeseries_signaturetk_get_frequencytk_get_holiday_signaturetk_get_holidays_by_yeartk_get_timeseries_signaturetk_get_timeseries_summarytk_get_timeseries_unit_frequencytk_get_timeseries_variablestk_get_trendtk_indextk_make_future_timeseriestk_make_holiday_sequencetk_make_timeseriestk_make_weekday_sequencetk_make_weekend_sequencetk_seasonal_diagnosticstk_stl_diagnosticstk_summary_diagnosticstk_tbltk_time_scale_templatetk_time_series_cv_plantk_tstk_ts_tk_ts_.data.frametk_ts_.defaulttk_ts_dispatch_tk_tsfeaturestk_xtstk_xts_tk_zootk_zoo_tk_zooregtk_zooreg_tk_zooreg_.data.frametk_zooreg_.defaulttk_zooreg_dispatch_ts_clean_vects_impute_vec
Dependencies:anytimeaskpassbase64encBHbitbit64bslibcachemclassclicliprclockcodetoolscolorspacecpp11crayoncrosstalkcurldata.tablediagramdigestdplyrevaluatefansifarverfastmapfontawesomeforcatsforecastfracdifffsfurrrfuturefuture.applygenericsggplot2globalsgluegowergtablehardhathighrhmshtmltoolshtmlwidgetshttripredisobandjquerylibjsonliteKernSmoothknitrlabelinglaterlatticelavalazyevallifecyclelistenvlmtestlubridatemagrittrMASSMatrixmemoisemgcvmimemunsellnlmennetnumDerivopensslpadrparallellypillarpkgconfigplotlyprettyunitsprodlimprogressprogressrpromisespurrrquadprogquantmodR6rappdirsRColorBrewerRcppRcppArmadilloRcppRollreadrrecipesrlangrmarkdownrpartrsamplesassscalesshapesliderSQUAREMstringistringrsurvivalsystibbletidyrtidyselecttimechangetimeDatetinytextseriestsfeaturesTTRtzdburcautf8vctrsviridisLitevroomwarpwithrxfunxtsyamlzoo
Anomaly Detection
Rendered fromTK08_Automatic_Anomaly_Detection.Rmd
usingknitr::rmarkdown
on Oct 30 2024.Last update: 2023-12-08
Started: 2020-04-23
Calendar Features
Rendered fromTK01_Working_With_Time_Series_Index.Rmd
usingknitr::rmarkdown
on Oct 30 2024.Last update: 2023-10-03
Started: 2017-04-29
Frequency and Trend Selection
Rendered fromTK06_Automatic_Frequency_And_Trend_Selection.Rmd
usingknitr::rmarkdown
on Oct 30 2024.Last update: 2023-10-03
Started: 2020-04-14
Intelligent Date & Time Sequences
Rendered fromTK02_Time_Series_Date_Sequences.Rmd
usingknitr::rmarkdown
on Oct 30 2024.Last update: 2023-03-29
Started: 2020-04-14
Plotting Seasonality and Correlation
Rendered fromTK05_Plotting_Seasonality_and_Correlation.Rmd
usingknitr::rmarkdown
on Oct 30 2024.Last update: 2023-03-20
Started: 2020-04-14
Time Series Class Conversion
Rendered fromTK00_Time_Series_Coercion.Rmd
usingknitr::rmarkdown
on Oct 30 2024.Last update: 2023-10-03
Started: 2017-04-19
Time Series Clustering
Rendered fromTK09_Clustering.Rmd
usingknitr::rmarkdown
on Oct 30 2024.Last update: 2023-03-20
Started: 2021-11-16
Time Series Data Wrangling
Rendered fromTK07_Time_Series_Data_Wrangling.Rmd
usingknitr::rmarkdown
on Oct 30 2024.Last update: 2023-10-02
Started: 2020-04-17
Time Series Machine Learning
Rendered fromTK03_Forecasting_Using_Time_Series_Signature.Rmd
usingknitr::rmarkdown
on Oct 30 2024.Last update: 2023-10-03
Started: 2017-05-13
Visualizing Time Series
Rendered fromTK04_Plotting_Time_Series.Rmd
usingknitr::rmarkdown
on Oct 30 2024.Last update: 2023-10-03
Started: 2020-04-13