Package: modeltime.ensemble 1.0.4

Matt Dancho

modeltime.ensemble: Ensemble Algorithms for Time Series Forecasting with Modeltime

A 'modeltime' extension that implements time series ensemble forecasting methods including model averaging, weighted averaging, and stacking. These techniques are popular methods to improve forecast accuracy and stability.

Authors:Matt Dancho [aut, cre], Business Science [cph]

modeltime.ensemble_1.0.4.tar.gz
modeltime.ensemble_1.0.4.zip(r-4.5)modeltime.ensemble_1.0.4.zip(r-4.4)modeltime.ensemble_1.0.4.zip(r-4.3)
modeltime.ensemble_1.0.4.tgz(r-4.5-any)modeltime.ensemble_1.0.4.tgz(r-4.4-any)modeltime.ensemble_1.0.4.tgz(r-4.3-any)
modeltime.ensemble_1.0.4.tar.gz(r-4.5-noble)modeltime.ensemble_1.0.4.tar.gz(r-4.4-noble)
modeltime.ensemble_1.0.4.tgz(r-4.4-emscripten)modeltime.ensemble_1.0.4.tgz(r-4.3-emscripten)
modeltime.ensemble.pdf |modeltime.ensemble.html
modeltime.ensemble/json (API)
NEWS

# Install 'modeltime.ensemble' in R:
install.packages('modeltime.ensemble', repos = c('https://business-science.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/business-science/modeltime.ensemble/issues

Pkgdown site:https://business-science.github.io

On CRAN:

Conda:

ensembleensemble-learningforecastforecastingmodeltimestackingstacking-ensembletidymodelstimetime-seriestimeseries

8.30 score 77 stars 143 scripts 473 downloads 15 exports 192 dependencies

Last updated 8 months agofrom:37f80be857. Checks:8 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 15 2025
R-4.5-winOKFeb 15 2025
R-4.5-macOKFeb 15 2025
R-4.5-linuxOKFeb 15 2025
R-4.4-winOKFeb 15 2025
R-4.4-macOKFeb 15 2025
R-4.3-winOKFeb 15 2025
R-4.3-macOKFeb 15 2025

Exports::=.data%>%as_labelas_nameenquoenquosensemble_averageensemble_model_specensemble_nested_averageensemble_nested_weightedensemble_weightedexprsymsyms

Dependencies:abindanytimeaskpassbackportsbase64encBHbigDbitbit64bitopsbroombslibcachemcallrcheckmateclassclicliprclockcodetoolscolorspacecommonmarkconflictedcpp11crayoncrosstalkcurldata.tabledescdiagramdialsDiceDesigndigestdistributionaldoFuturedoParalleldplyrdygraphsevaluateextraDistrfansifarverfastmapfontawesomeforcatsforeachforecastfracdifffsfurrrfuturefuture.applygenericsggplot2glmnetglobalsgluegowerGPfitgridExtragtgtablehardhathighrhmshtmltoolshtmlwidgetshttrinferinlineipredisobanditeratorsjanitorjquerylibjsonlitejuicyjuiceKernSmoothknitrlabelinglaterlatticelavalazyevallhslifecyclelistenvlmtestloolubridatemagrittrmarkdownMASSMatrixmatrixStatsmemoisemgcvmimemodeldatamodelenvmodeltimemodeltime.resamplemunsellnlmennetnumDerivopensslpadrparallellyparsnippatchworkpillarpkgbuildpkgconfigplotlyposteriorprettyunitsprocessxprodlimprogressprogressrpromisesprophetpspurrrquadprogquantmodQuickJSRR6rappdirsRColorBrewerRcppRcppArmadilloRcppEigenRcppParallelRcppRollreactablereactRreadrrecipesrlangrmarkdownrpartrsamplerstanrstantoolsrstudioapisassscalessfdshapeslidersnakecasesparsevctrsSQUAREMStanHeadersstringistringrsurvivalsystensorAtibbletictoctidymodelstidyrtidyselecttimechangetimeDatetimetktinytextseriestsfeaturesTTRtunetzdburcautf8V8vctrsviridisLitevroomwarpwithrworkflowsworkflowsetsxfunxgboostxml2xtsyamlyardstickzoo

Autoregressive Forecasting (Recursive Ensembles)

Rendered fromrecursive-ensembles.Rmdusingknitr::rmarkdownon Feb 15 2025.

Last update: 2023-12-13
Started: 2021-04-03

Getting Started with Modeltime Ensemble

Rendered fromgetting-started-with-modeltime-ensemble.Rmdusingknitr::rmarkdownon Feb 15 2025.

Last update: 2023-12-13
Started: 2020-09-21

Iterative Forecasting with Nested Ensembles

Rendered fromnested-ensembles.Rmdusingknitr::rmarkdownon Feb 15 2025.

Last update: 2023-12-13
Started: 2021-10-13