Package: modeltime 1.3.1.9000

Matt Dancho

modeltime: The Tidymodels Extension for Time Series Modeling

The time series forecasting framework for use with the 'tidymodels' ecosystem. Models include ARIMA, Exponential Smoothing, and additional time series models from the 'forecast' and 'prophet' packages. Refer to "Forecasting Principles & Practice, Second edition" (<https://otexts.com/fpp2/>). Refer to "Prophet: forecasting at scale" (<https://research.facebook.com/blog/2017/02/prophet-forecasting-at-scale/>.).

Authors:Matt Dancho [aut, cre], Business Science [cph]

modeltime_1.3.1.9000.tar.gz
modeltime_1.3.1.9000.zip(r-4.5)modeltime_1.3.1.9000.zip(r-4.4)modeltime_1.3.1.9000.zip(r-4.3)
modeltime_1.3.1.9000.tgz(r-4.4-any)modeltime_1.3.1.9000.tgz(r-4.3-any)
modeltime_1.3.1.9000.tar.gz(r-4.5-noble)modeltime_1.3.1.9000.tar.gz(r-4.4-noble)
modeltime_1.3.1.9000.tgz(r-4.4-emscripten)modeltime_1.3.1.9000.tgz(r-4.3-emscripten)
modeltime.pdf |modeltime.html
modeltime/json (API)
NEWS

# Install 'modeltime' in R:
install.packages('modeltime', repos = c('https://business-science.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/business-science/modeltime/issues

Datasets:

On CRAN:

arimadata-sciencedeep-learningetsforecastingmachine-learningmachine-learning-algorithmsmodeltimeprophettbatstidymodelingtidymodelstimetime-seriestime-series-analysistimeseriestimeseries-forecasting

10.96 score 539 stars 6 packages 1.0k scripts 3.6k downloads 169 exports 187 dependencies

Last updated 30 days agofrom:2b80af59e8. Checks:ERROR: 1 WARNING: 6. Indexed: yes.

TargetResultDate
Doc / VignettesFAILNov 21 2024
R-4.5-winWARNINGNov 21 2024
R-4.5-linuxWARNINGNov 21 2024
R-4.4-winWARNINGNov 21 2024
R-4.4-macWARNINGNov 21 2024
R-4.3-winWARNINGNov 21 2024
R-4.3-macWARNINGNov 21 2024

Exports::=.data.prepare_panel_transform.prepare_transform%>%adam_fit_implAdam_predict_impladam_regadd_modeltime_modelarima_boostArima_fit_implArima_predict_implarima_regarima_xgboost_fit_implarima_xgboost_predict_implas_labelas_modeltime_tableas_nameauto_adam_fit_implAuto_adam_predict_implauto_arima_fit_implauto_arima_xgboost_fit_implbake_xreg_recipechangepoint_numchangepoint_rangecombination_methodcombine_modeltime_tablescontrol_fit_workflowsetcontrol_nested_fitcontrol_nested_forecastcontrol_nested_refitcontrol_refitcreate_model_gridcreate_xreg_recipecroston_fit_implcroston_predict_impldampingdamping_smoothdefault_forecast_accuracy_metric_setdistributiondrop_modeltime_modelenquoenquoserrorets_fit_implets_modelets_predict_implexp_smoothingexprextend_timeseriesextended_forecast_accuracy_metric_setextract_nested_best_model_reportextract_nested_error_reportextract_nested_future_forecastextract_nested_modeltime_tableextract_nested_test_accuracyextract_nested_test_forecastextract_nested_test_splitextract_nested_train_splitget_arima_descriptionget_model_descriptionget_tbats_descriptiongrowthinformation_criteriais_calibratedis_modeltime_modelis_modeltime_tableis_residualsjuice_xreg_recipeload_namespacelossmaapemaape_vecmake_ts_splitsmdl_time_forecastmdl_time_refitmodeltime_accuracymodeltime_calibratemodeltime_fit_workflowsetmodeltime_forecastmodeltime_nested_fitmodeltime_nested_forecastmodeltime_nested_refitmodeltime_nested_select_bestmodeltime_refitmodeltime_residualsmodeltime_residuals_testmodeltime_tablenaive_fit_implnaive_predict_implnaive_regnest_timeseriesnew_modeltime_bridgennetar_fit_implnnetar_predict_implnnetar_regnon_seasonal_arnon_seasonal_differencesnon_seasonal_manum_networksoutliers_treatmentpanel_tailparallel_startparallel_stopparse_index_from_dataparse_period_from_indexplot_modeltime_forecastplot_modeltime_residualspluck_modeltime_modelprior_scale_changepointsprior_scale_holidaysprior_scale_seasonalityprobability_modelprophet_boostprophet_fit_implprophet_predict_implprophet_regprophet_xgboost_fit_implprophet_xgboost_predict_implpull_modeltime_modelpull_modeltime_residualspull_parsnip_preprocessorrecursiveregressors_treatmentseasonseasonal_arseasonal_differencesseasonal_maseasonal_periodseasonal_regseasonality_dailyseasonality_weeklyseasonality_yearlyselect_ordersmooth_fit_implsmooth_levelsmooth_predict_implsmooth_seasonalsmooth_trendsnaive_fit_implsnaive_predict_implsplit_nested_timeseriesstlm_arima_fit_implstlm_arima_predict_implstlm_ets_fit_implstlm_ets_predict_implsummarize_accuracy_metricssymsymstable_modeltime_accuracytbats_fit_impltbats_predict_impltemporal_hier_fit_impltemporal_hier_predict_impltemporal_hierarchytheta_fit_impltheta_predict_impltrendtrend_smoothupdate_model_descriptionupdate_modeltime_descriptionupdate_modeltime_modeluse_constantuse_modelwindow_function_fit_implwindow_function_predict_implwindow_regxgboost_implxgboost_predict

Dependencies:abindanytimeaskpassbackportsbase64encBHbigDbitbit64bitopsbroombslibcachemcallrcheckmateclassclicliprclockcodetoolscolorspacecommonmarkconflictedcpp11crayoncrosstalkcurldata.tabledescdiagramdialsDiceDesigndigestdistributionaldoFuturedoParalleldplyrdygraphsevaluateextraDistrfansifarverfastmapfontawesomeforcatsforeachforecastfracdifffsfurrrfuturefuture.applygenericsggplot2globalsgluegowerGPfitgridExtragtgtablehardhathighrhmshtmltoolshtmlwidgetshttrinferinlineipredisobanditeratorsjanitorjquerylibjsonlitejuicyjuiceKernSmoothknitrlabelinglaterlatticelavalazyevallhslifecyclelistenvlmtestloolubridatemagrittrmarkdownMASSMatrixmatrixStatsmemoisemgcvmimemodeldatamodelenvmunsellnlmennetnumDerivopensslpadrparallellyparsnippatchworkpillarpkgbuildpkgconfigplotlyposteriorprettyunitsprocessxprodlimprogressprogressrpromisesprophetpspurrrquadprogquantmodQuickJSRR6rappdirsRColorBrewerRcppRcppArmadilloRcppEigenRcppParallelRcppRollreactablereactRreadrrecipesrlangrmarkdownrpartrsamplerstanrstantoolsrstudioapisassscalessfdshapeslidersnakecaseSQUAREMStanHeadersstringistringrsurvivalsystensorAtibbletidymodelstidyrtidyselecttimechangetimeDatetimetktinytextseriestsfeaturesTTRtunetzdburcautf8V8vctrsviridisLitevroomwarpwithrworkflowsworkflowsetsxfunxgboostxml2xtsyamlyardstickzoo

Readme and manuals

Help Manual

Help pageTopics
Tuning Parameters for ADAM Modelsadam_params distribution ets_model information_criteria loss outliers_treatment probability_model regressors_treatment select_order use_constant
General Interface for ADAM Regression Modelsadam_reg
Add a Model into a Modeltime Tableadd_modeltime_model
General Interface for "Boosted" ARIMA Regression Modelsarima_boost
Tuning Parameters for ARIMA Modelsarima_params non_seasonal_ar non_seasonal_differences non_seasonal_ma seasonal_ar seasonal_differences seasonal_ma
General Interface for ARIMA Regression Modelsarima_reg
Combine multiple Modeltime Tables into a single Modeltime Tablecombine_modeltime_tables
Control aspects of the training processcontrol_fit_workflowset control_modeltime control_nested_fit control_nested_forecast control_nested_refit control_refit
Helper to make 'parsnip' model specs from a 'dials' parameter gridcreate_model_grid
Developer Tools for preparing XREGS (Regressors)create_xreg_recipe
Drop a Model from a Modeltime Tabledrop_modeltime_model
General Interface for Exponential Smoothing State Space Modelsexp_smoothing
Tuning Parameters for Exponential Smoothing Modelsdamping damping_smooth error exp_smoothing_params season smooth_level smooth_seasonal smooth_trend trend trend_smooth
Get model descriptions for Arima objectsget_arima_description
Get model descriptions for parsnip, workflows & modeltime objectsget_model_description
Get model descriptions for TBATS objectsget_tbats_description
Log Extractor Functions for Modeltime Nested Tablesextract_nested_best_model_report extract_nested_error_report extract_nested_future_forecast extract_nested_modeltime_table extract_nested_test_accuracy extract_nested_test_forecast extract_nested_test_split extract_nested_train_split log_extractors
The 750th Monthly Time Series used in the M4 Competitionm750
Three (3) Models trained on the M750 Data (Training Set)m750_models
The results of train/test splitting the M750 Datam750_splits
The Time Series Cross Validation Resamples the M750 Data (Training Set)m750_training_resamples
Mean Arctangent Absolute Percentage Errormaape
Mean Arctangent Absolute Percentage Errormaape_vec
Forecast Accuracy Metrics Setsdefault_forecast_accuracy_metric_set extended_forecast_accuracy_metric_set metric_sets
Calculate Accuracy Metricsmodeltime_accuracy
Preparation for forecastingmodeltime_calibrate
Fit a 'workflowset' object to one or multiple time seriesmodeltime_fit_workflowset
Forecast future datamodeltime_forecast
Fit Tidymodels Workflows to Nested Time Seriesmodeltime_nested_fit
Modeltime Nested Forecastmodeltime_nested_forecast
Refits a Nested Modeltime Tablemodeltime_nested_refit
Select the Best Models from Nested Modeltime Tablemodeltime_nested_select_best
Refit one or more trained models to new datamodeltime_refit
Extract Residuals Informationmodeltime_residuals
Apply Statistical Tests to Residualsmodeltime_residuals_test
Scale forecast analysis with a Modeltime Tableas_modeltime_table modeltime_table
General Interface for NAIVE Forecast Modelsnaive_reg
Constructor for creating modeltime modelsnew_modeltime_bridge
Tuning Parameters for NNETAR Modelsnnetar_params num_networks
General Interface for NNETAR Regression Modelsnnetar_reg
Filter the last N rows (Tail) for multiple time seriespanel_tail
Start parallel clusters using 'parallel' packageparallel_start parallel_stop
Developer Tools for parsing date and date-time informationparse_index parse_index_from_data parse_period_from_index
Interactive Forecast Visualizationplot_modeltime_forecast
Interactive Residuals Visualizationplot_modeltime_residuals
Extract model by model id in a Modeltime Tablepluck_modeltime_model pluck_modeltime_model.mdl_time_tbl pull_modeltime_model
Prepared Nested Modeltime Dataextend_timeseries nest_timeseries prep_nested split_nested_timeseries
General Interface for Boosted PROPHET Time Series Modelsprophet_boost
Tuning Parameters for Prophet Modelschangepoint_num changepoint_range growth prior_scale_changepoints prior_scale_holidays prior_scale_seasonality prophet_params seasonality_daily seasonality_weekly seasonality_yearly
General Interface for PROPHET Time Series Modelsprophet_reg
Extracts modeltime residuals data from a Modeltime Modelpull_modeltime_residuals
Pulls the Formula from a Fitted Parsnip Model Objectpull_parsnip_preprocessor
Developer Tools for processing XREGS (Regressors)bake_xreg_recipe juice_xreg_recipe recipe_helpers
Create a Recursive Time Series Model from a Parsnip or Workflow Regression Modelrecursive
General Interface for Multiple Seasonality Regression Models (TBATS, STLM)seasonal_reg
Summarize Accuracy Metricssummarize_accuracy_metrics
Interactive Accuracy Tablestable_modeltime_accuracy
General Interface for Temporal Hierarchical Forecasting (THIEF) Modelstemporal_hierarchy
Tuning Parameters for TEMPORAL HIERARCHICAL Modelscombination_method temporal_hierarchy_params use_model
Tuning Parameters for Time Series (ts-class) Modelsseasonal_period time_series_params
Update the model description by model id in a Modeltime Tableupdate_modeltime_description update_model_description
Update the model by model id in a Modeltime Tableupdate_modeltime_model
General Interface for Window Forecast Modelswindow_reg