Package: correlationfunnel 0.2.0
correlationfunnel: Speed Up Exploratory Data Analysis (EDA) with the Correlation Funnel
Speeds up exploratory data analysis (EDA) by providing a succinct workflow and interactive visualization tools for understanding which features have relationships to target (response). Uses binary correlation analysis to determine relationship. Default correlation method is the Pearson method. Lian Duan, W Nick Street, Yanchi Liu, Songhua Xu, and Brook Wu (2014) <doi:10.1145/2637484>.
Authors:
correlationfunnel_0.2.0.tar.gz
correlationfunnel_0.2.0.zip(r-4.5)correlationfunnel_0.2.0.zip(r-4.4)correlationfunnel_0.2.0.zip(r-4.3)
correlationfunnel_0.2.0.tgz(r-4.4-any)correlationfunnel_0.2.0.tgz(r-4.3-any)
correlationfunnel_0.2.0.tar.gz(r-4.5-noble)correlationfunnel_0.2.0.tar.gz(r-4.4-noble)
correlationfunnel_0.2.0.tgz(r-4.4-emscripten)correlationfunnel_0.2.0.tgz(r-4.3-emscripten)
correlationfunnel.pdf |correlationfunnel.html✨
correlationfunnel/json (API)
NEWS
# Install 'correlationfunnel' in R: |
install.packages('correlationfunnel', repos = c('https://business-science.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/business-science/correlationfunnel/issues
- customer_churn_tbl - Customer Churn Data Set for a Telecommunications Company
- marketing_campaign_tbl - Marketing Data for a Bank
correlationexploratory-analysisexploratory-data-analysisexploratory-data-visualizationstidyverse
Last updated 10 months agofrom:e592ef37ff. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 11 2024 |
R-4.5-win | NOTE | Nov 11 2024 |
R-4.5-linux | NOTE | Nov 11 2024 |
R-4.4-win | NOTE | Nov 11 2024 |
R-4.4-mac | NOTE | Nov 11 2024 |
R-4.3-win | NOTE | Nov 11 2024 |
R-4.3-mac | NOTE | Nov 11 2024 |
Exports:%>%binarizecorrelateplot_correlation_funnel
Dependencies:askpassbase64encbslibcachemclasscliclockcodetoolscolorspacecpp11crayoncrosstalkcurldata.tablediagramdigestdplyrevaluatefansifarverfastmapfontawesomeforcatsfsfuturefuture.applygenericsggplot2ggrepelglobalsgluegowergtablehardhathighrhtmltoolshtmlwidgetshttripredisobandjquerylibjsonliteKernSmoothknitrlabelinglaterlatticelavalazyevallifecyclelistenvlubridatemagrittrMASSMatrixmemoisemgcvmimemunsellnlmennetnumDerivopensslparallellypillarpkgconfigplotlyprodlimprogressrpromisespurrrR6rappdirsRColorBrewerRcpprecipesrlangrmarkdownrpartrstudioapisassscalesshapeSQUAREMstringistringrsurvivalsystibbletidyrtidyselecttimechangetimeDatetinytextzdbutf8vctrsviridisLitewithrxfunyaml
Introducing Correlation Funnel - Customer Churn Example
Rendered fromintroducing_correlation_funnel.Rmd
usingknitr::rmarkdown
on Nov 11 2024.Last update: 2020-06-09
Started: 2019-07-16
Methodology, Key Considerations, and FAQs
Rendered fromkey_considerations.Rmd
usingknitr::rmarkdown
on Nov 11 2024.Last update: 2020-06-09
Started: 2019-07-16
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Turn data with numeric, categorical features into binary data. | binarize |
Correlate a response (target) to features in a data set. | correlate |
Customer Churn Data Set for a Telecommunications Company | customer_churn_tbl |
Marketing Data for a Bank | marketing_campaign_tbl |
Plot a Correlation Funnel | plot_correlation_funnel |