Package: anomalize 0.3.0.9000

Matt Dancho

anomalize: Tidy Anomaly Detection

The 'anomalize' package enables a "tidy" workflow for detecting anomalies in data. The main functions are time_decompose(), anomalize(), and time_recompose(). When combined, it's quite simple to decompose time series, detect anomalies, and create bands separating the "normal" data from the anomalous data at scale (i.e. for multiple time series). Time series decomposition is used to remove trend and seasonal components via the time_decompose() function and methods include seasonal decomposition of time series by Loess ("stl") and seasonal decomposition by piecewise medians ("twitter"). The anomalize() function implements two methods for anomaly detection of residuals including using an inner quartile range ("iqr") and generalized extreme studentized deviation ("gesd"). These methods are based on those used in the 'forecast' package and the Twitter 'AnomalyDetection' package. Refer to the associated functions for specific references for these methods.

Authors:Matt Dancho [aut, cre], Davis Vaughan [aut]

anomalize_0.3.0.9000.tar.gz
anomalize_0.3.0.9000.zip(r-4.5)anomalize_0.3.0.9000.zip(r-4.4)anomalize_0.3.0.9000.zip(r-4.3)
anomalize_0.3.0.9000.tgz(r-4.5-any)anomalize_0.3.0.9000.tgz(r-4.4-any)anomalize_0.3.0.9000.tgz(r-4.3-any)
anomalize_0.3.0.9000.tar.gz(r-4.5-noble)anomalize_0.3.0.9000.tar.gz(r-4.4-noble)
anomalize_0.3.0.9000.tgz(r-4.4-emscripten)anomalize_0.3.0.9000.tgz(r-4.3-emscripten)
anomalize.pdf |anomalize.html
anomalize/json (API)
NEWS

# Install 'anomalize' in R:
install.packages('anomalize', repos = c('https://business-science.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/business-science/anomalize/issues

Pkgdown site:https://business-science.github.io

Datasets:

On CRAN:

Conda:

anomalyanomaly-detectiondecompositiondetect-anomaliesiqrtime-series

9.56 score 339 stars 332 scripts 2.2k downloads 2 mentions 17 exports 134 dependencies

Last updated 1 years agofrom:f5d37063c8. Checks:8 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 23 2025
R-4.5-winOKFeb 23 2025
R-4.5-macOKFeb 23 2025
R-4.5-linuxOKFeb 23 2025
R-4.4-winOKFeb 23 2025
R-4.4-macOKFeb 23 2025
R-4.3-winOKFeb 23 2025
R-4.3-macOKFeb 23 2025

Exports:anomalizeclean_anomaliesdecompose_stldecompose_twittergesdget_time_scale_templateiqrplot_anomaliesplot_anomaly_decompositionprep_tbl_timeset_time_scale_templatetime_applytime_decomposetime_frequencytime_recomposetime_scale_templatetime_trend

Dependencies:anytimeaskpassassertthatbackportsbase64encBHbitbit64broombslibcachemclassclicliprclockcodetoolscolorspacecpp11crayoncrosstalkcurldata.tablediagramdigestdplyrevaluatefansifarverfastmapfontawesomeforcatsforecastfracdifffsfurrrfuturefuture.applygenericsggplot2globalsgluegowergtablehardhathighrhmshtmltoolshtmlwidgetshttripredisobandjquerylibjsonliteKernSmoothknitrlabelinglaterlatticelavalazyevallifecyclelistenvlmtestlubridatemagrittrMASSMatrixmemoisemgcvmimemunsellnlmennetnumDerivopensslpadrparallellypillarpkgconfigplotlyprettyunitsprodlimprogressprogressrpromisespurrrquadprogquantmodR6rappdirsRColorBrewerRcppRcppArmadilloRcppRollreadrrecipesrlangrmarkdownrpartrsamplesassscalesshapeslidersparsevctrsSQUAREMstringistringrsurvivalsweepsystibbletibbletimetidyrtidyselecttimechangetimeDatetimetktinytextseriestsfeaturesTTRtzdburcautf8vctrsviridisLitevroomwarpwithrxfunxtsyamlzoo

Anomalize Methods

Rendered fromanomalize_methods.Rmdusingknitr::rmarkdownon Feb 23 2025.

Last update: 2023-12-06
Started: 2018-03-22

Anomalize Quick Start Guide

Rendered fromanomalize_quick_start_guide.Rmdusingknitr::rmarkdownon Feb 23 2025.

Last update: 2023-12-06
Started: 2018-03-22

Reduce Forecast Error with Cleaned Anomalies

Rendered fromforecasting_with_cleaned_anomalies.Rmdusingknitr::rmarkdownon Feb 23 2025.

Last update: 2023-12-06
Started: 2019-09-20