Package: anomalize 0.3.0.9000
anomalize: Tidy Anomaly Detection
The 'anomalize' package enables a "tidy" workflow for detecting anomalies in data. The main functions are time_decompose(), anomalize(), and time_recompose(). When combined, it's quite simple to decompose time series, detect anomalies, and create bands separating the "normal" data from the anomalous data at scale (i.e. for multiple time series). Time series decomposition is used to remove trend and seasonal components via the time_decompose() function and methods include seasonal decomposition of time series by Loess ("stl") and seasonal decomposition by piecewise medians ("twitter"). The anomalize() function implements two methods for anomaly detection of residuals including using an inner quartile range ("iqr") and generalized extreme studentized deviation ("gesd"). These methods are based on those used in the 'forecast' package and the Twitter 'AnomalyDetection' package. Refer to the associated functions for specific references for these methods.
Authors:
anomalize_0.3.0.9000.tar.gz
anomalize_0.3.0.9000.zip(r-4.5)anomalize_0.3.0.9000.zip(r-4.4)anomalize_0.3.0.9000.zip(r-4.3)
anomalize_0.3.0.9000.tgz(r-4.4-any)anomalize_0.3.0.9000.tgz(r-4.3-any)
anomalize_0.3.0.9000.tar.gz(r-4.5-noble)anomalize_0.3.0.9000.tar.gz(r-4.4-noble)
anomalize_0.3.0.9000.tgz(r-4.4-emscripten)anomalize_0.3.0.9000.tgz(r-4.3-emscripten)
anomalize.pdf |anomalize.html✨
anomalize/json (API)
NEWS
# Install 'anomalize' in R: |
install.packages('anomalize', repos = c('https://business-science.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/business-science/anomalize/issues
- tidyverse_cran_downloads - Downloads of various "tidyverse" packages from CRAN
anomalyanomaly-detectiondecompositiondetect-anomaliesiqrtime-series
Last updated 11 months agofrom:f5d37063c8. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 26 2024 |
R-4.5-win | OK | Oct 26 2024 |
R-4.5-linux | OK | Oct 26 2024 |
R-4.4-win | OK | Oct 26 2024 |
R-4.4-mac | OK | Oct 26 2024 |
R-4.3-win | OK | Oct 26 2024 |
R-4.3-mac | OK | Oct 26 2024 |
Exports:anomalizeclean_anomaliesdecompose_stldecompose_twittergesdget_time_scale_templateiqrplot_anomaliesplot_anomaly_decompositionprep_tbl_timeset_time_scale_templatetime_applytime_decomposetime_frequencytime_recomposetime_scale_templatetime_trend
Dependencies:anytimeaskpassassertthatbackportsbase64encBHbitbit64broombslibcachemclassclicliprclockcodetoolscolorspacecpp11crayoncrosstalkcurldata.tablediagramdigestdplyrevaluatefansifarverfastmapfontawesomeforcatsforecastfracdifffsfurrrfuturefuture.applygenericsggplot2globalsgluegowergtablehardhathighrhmshtmltoolshtmlwidgetshttripredisobandjquerylibjsonliteKernSmoothknitrlabelinglaterlatticelavalazyevallifecyclelistenvlmtestlubridatemagrittrMASSMatrixmemoisemgcvmimemunsellnlmennetnumDerivopensslpadrparallellypillarpkgconfigplotlyprettyunitsprodlimprogressprogressrpromisespurrrquadprogquantmodR6rappdirsRColorBrewerRcppRcppArmadilloRcppRollreadrrecipesrlangrmarkdownrpartrsamplesassscalesshapesliderSQUAREMstringistringrsurvivalsweepsystibbletibbletimetidyrtidyselecttimechangetimeDatetimetktinytextseriestsfeaturesTTRtzdburcautf8vctrsviridisLitevroomwarpwithrxfunxtsyamlzoo
Anomalize Methods
Rendered fromanomalize_methods.Rmd
usingknitr::rmarkdown
on Oct 26 2024.Last update: 2023-12-06
Started: 2018-03-22
Anomalize Quick Start Guide
Rendered fromanomalize_quick_start_guide.Rmd
usingknitr::rmarkdown
on Oct 26 2024.Last update: 2023-12-06
Started: 2018-03-22
Reduce Forecast Error with Cleaned Anomalies
Rendered fromforecasting_with_cleaned_anomalies.Rmd
usingknitr::rmarkdown
on Oct 26 2024.Last update: 2023-12-06
Started: 2019-09-20
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Detect anomalies using the tidyverse | anomalize |
Methods that power anomalize() | anomalize_methods gesd iqr |
Clean anomalies from anomalized data | clean_anomalies |
Methods that power time_decompose() | decompose_methods decompose_stl decompose_twitter |
Visualize the anomalies in one or multiple time series | plot_anomalies |
Visualize the time series decomposition with anomalies shown | plot_anomaly_decomposition |
Automatically create tibbletime objects from tibbles | prep_tbl_time |
Get and modify time scale template | get_time_scale_template set_time_scale_template time_scale_template |
Downloads of various "tidyverse" packages from CRAN | tidyverse_cran_downloads |
Apply a function to a time series by period | time_apply |
Decompose a time series in preparation for anomaly detection | time_decompose |
Generate a time series frequency from a periodicity | time_frequency time_trend |
Recompose bands separating anomalies from "normal" observations | time_recompose |