Time series data
wrangling is an essential skill for any forecaster.
timetk
includes the essential data wrangling tools. In this
tutorial, we’ll cover:
Additional concepts covered:
%+time
infix operation (See Padding Data: Low to High
Frequency)plot_time_series()
for
all visualizationsThis tutorial will use the FANG
dataset:
## # A tibble: 4,032 × 8
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 FB 2013-01-02 27.4 28.2 27.4 28 69846400 28
## 2 FB 2013-01-03 27.9 28.5 27.6 27.8 63140600 27.8
## 3 FB 2013-01-04 28.0 28.9 27.8 28.8 72715400 28.8
## 4 FB 2013-01-07 28.7 29.8 28.6 29.4 83781800 29.4
## 5 FB 2013-01-08 29.5 29.6 28.9 29.1 45871300 29.1
## 6 FB 2013-01-09 29.7 30.6 29.5 30.6 104787700 30.6
## 7 FB 2013-01-10 30.6 31.5 30.3 31.3 95316400 31.3
## 8 FB 2013-01-11 31.3 32.0 31.1 31.7 89598000 31.7
## 9 FB 2013-01-14 32.1 32.2 30.6 31.0 98892800 31.0
## 10 FB 2013-01-15 30.6 31.7 29.9 30.1 173242600 30.1
## # ℹ 4,022 more rows
The adjusted column contains the adjusted closing prices for each day.
FANG %>%
group_by(symbol) %>%
plot_time_series(date, adjusted, .facet_ncol = 2, .interactive = FALSE)
The volume column contains the trade volume (number of times the stock was transacted) for the day.
summarise_by_time()
aggregates by a period. It’s great
for:
sum()
mean()
, first()
,
last()
Objective: Get the total trade volume by quarter
sum()
.by = "quarter"
Objective: Get the first value in each month
first()
to get the first value, which has
the effect of reducing the data (i.e. smoothing). We could use
mean()
or median()
..by = "month"
to
aggregate by month.Used to quickly filter a continuous time range.
Objective: Get the adjusted stock prices in the 3rd quarter of 2013.
.start_date = "2013-09"
: Converts to “2013-09-01.end_date = "2013"
: Converts to “2013-12-31%+time
and
%-time
is shown in “Padding Data: Low to High
Frequency”.Used to fill in (pad) gaps and to go from from low frequency to high
frequency. This function uses the awesome padr
library for
filling and expanding timestamps.
Objective: Make an irregular series regular.
NA
..pad_value
or we can impute
using a function like ts_impute_vec()
(shown next).## pad applied on the interval: day
## # A tibble: 5,836 × 8
## # Groups: symbol [4]
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AMZN 2013-01-02 256. 258. 253. 257. 3271000 257.
## 2 AMZN 2013-01-03 257. 261. 256. 258. 2750900 258.
## 3 AMZN 2013-01-04 258. 260. 257. 259. 1874200 259.
## 4 AMZN 2013-01-05 NA NA NA NA NA NA
## 5 AMZN 2013-01-06 NA NA NA NA NA NA
## 6 AMZN 2013-01-07 263. 270. 263. 268. 4910000 268.
## 7 AMZN 2013-01-08 267. 269. 264. 266. 3010700 266.
## 8 AMZN 2013-01-09 268. 270. 265. 266. 2265600 266.
## 9 AMZN 2013-01-10 269. 269. 262. 265. 2863400 265.
## 10 AMZN 2013-01-11 265. 268. 264. 268. 2413300 268.
## # ℹ 5,826 more rows
Objective: Go from Daily to Hourly timestamp intervals for 1 month from the start date. Impute the missing values.
.by = "hour"
pads from daily to hourlyts_impute_vec()
, which performs linear interpolation when
period = 1
.FIRST(date) %+time% "1 month"
: Selecting the first date
in the sequence then using a special infix operation,
%+time%
, called “add time”. In this case I add “1
month”.We have a new function, slidify()
that turns any
function into a sliding (rolling) window function. It takes concepts
from tibbletime::rollify()
and it improves them with the R
package slider
.
Objective: Calculate a “centered” simple rolling average with partial window rolling and the start and end windows.
slidify()
turns the mean()
function into a
rolling average.# Make the rolling function
roll_avg_30 <- slidify(.f = mean, .period = 30, .align = "center", .partial = TRUE)
# Apply the rolling function
FANG %>%
select(symbol, date, adjusted) %>%
group_by(symbol) %>%
# Apply Sliding Function
mutate(rolling_avg_30 = roll_avg_30(adjusted)) %>%
tidyr::pivot_longer(cols = c(adjusted, rolling_avg_30)) %>%
plot_time_series(date, value, .color_var = name,
.facet_ncol = 2, .smooth = FALSE,
.interactive = FALSE)
For simple rolling calculations (rolling average), we can accomplish
this operation faster with slidify_vec()
- A vectorized
rolling function for simple summary rolls (e.g. mean()
,
sd()
, sum()
, etc)
FANG %>%
select(symbol, date, adjusted) %>%
group_by(symbol) %>%
# Apply roll apply Function
mutate(rolling_avg_30 = slidify_vec(adjusted, ~ mean(.),
.period = 30, .partial = TRUE))
## # A tibble: 4,032 × 4
## # Groups: symbol [4]
## symbol date adjusted rolling_avg_30
## <chr> <date> <dbl> <dbl>
## 1 FB 2013-01-02 28 30.0
## 2 FB 2013-01-03 27.8 30.1
## 3 FB 2013-01-04 28.8 30.2
## 4 FB 2013-01-07 29.4 30.2
## 5 FB 2013-01-08 29.1 30.3
## 6 FB 2013-01-09 30.6 30.3
## 7 FB 2013-01-10 31.3 30.3
## 8 FB 2013-01-11 31.7 30.2
## 9 FB 2013-01-14 31.0 30.1
## 10 FB 2013-01-15 30.1 30.1
## # ℹ 4,022 more rows
Objective: Calculate a rolling regression.
slidify()
is built for this.purrr
..1
,
..2
, ..3
, etc notation to setup a
function# Rolling regressions are easy to implement using `.unlist = FALSE`
lm_roll <- slidify(~ lm(..1 ~ ..2 + ..3), .period = 90,
.unlist = FALSE, .align = "right")
FANG %>%
select(symbol, date, adjusted, volume) %>%
group_by(symbol) %>%
mutate(numeric_date = as.numeric(date)) %>%
# Apply rolling regression
mutate(rolling_lm = lm_roll(adjusted, volume, numeric_date)) %>%
filter(!is.na(rolling_lm))
## # A tibble: 3,676 × 6
## # Groups: symbol [4]
## symbol date adjusted volume numeric_date rolling_lm
## <chr> <date> <dbl> <dbl> <dbl> <list>
## 1 FB 2013-05-10 26.7 30847100 15835 <lm>
## 2 FB 2013-05-13 26.8 29068800 15838 <lm>
## 3 FB 2013-05-14 27.1 24930300 15839 <lm>
## 4 FB 2013-05-15 26.6 30299800 15840 <lm>
## 5 FB 2013-05-16 26.1 35499100 15841 <lm>
## 6 FB 2013-05-17 26.2 29462700 15842 <lm>
## 7 FB 2013-05-20 25.8 42402900 15845 <lm>
## 8 FB 2013-05-21 25.7 26261300 15846 <lm>
## 9 FB 2013-05-22 25.2 45314500 15847 <lm>
## 10 FB 2013-05-23 25.1 37663100 15848 <lm>
## # ℹ 3,666 more rows
My Talk on High-Performance Time Series Forecasting
Time series is changing. Businesses now need 10,000+ time series forecasts every day.
High-Performance Forecasting Systems will save companies MILLIONS of dollars. Imagine what will happen to your career if you can provide your organization a “High-Performance Time Series Forecasting System” (HPTSF System).
I teach how to build a HPTFS System in my High-Performance Time Series Forecasting Course. If interested in learning Scalable High-Performance Forecasting Strategies then take my course. You will learn:
Modeltime
- 30+ Models (Prophet, ARIMA, XGBoost, Random
Forest, & many more)GluonTS
(Competition
Winners)