Extending
broom
to time series forecasting
The sweep
package extends the broom
tools
(tidy, glance, and augment) for performing forecasts and time series
analysis in the “tidyverse”. The package is geared towards the workflow
required to perform forecasts using Rob Hyndman’s forecast
package, and contains the following elements:
model tidiers: sw_tidy
,
sw_glance
, sw_augment
,
sw_tidy_decomp
functions extend tidy
,
glance
, and augment
from the
broom
package specifically for models (ets()
,
Arima()
, bats()
, etc) used for
forecasting.
forecast tidier: sw_sweep
converts
a forecast
object to a tibble that can be easily
manipulated in the “tidyverse”.
To illustrate, let’s take a basic forecasting workflow starting from data collected in a tibble format and then performing a forecast to achieve the end result in tibble format.
Before we get started, load the following packages.
We’ll use the tidyquant
package to get the US alcohol
sales, which comes from the FRED data base (the origin is the US Bureau
of the Census, one of the 80+ data sources FRED connects to). The FRED
code is “S4248SM144NCEN” and the data set can be found here.
alcohol_sales_tbl <- tq_get("S4248SM144NCEN",
get = "economic.data",
from = "2007-01-01",
to = "2016-12-31")
alcohol_sales_tbl
## # A tibble: 120 × 3
## symbol date price
## <chr> <date> <int>
## 1 S4248SM144NCEN 2007-01-01 6627
## 2 S4248SM144NCEN 2007-02-01 6743
## 3 S4248SM144NCEN 2007-03-01 8195
## 4 S4248SM144NCEN 2007-04-01 7828
## 5 S4248SM144NCEN 2007-05-01 9570
## 6 S4248SM144NCEN 2007-06-01 9484
## 7 S4248SM144NCEN 2007-07-01 8608
## 8 S4248SM144NCEN 2007-08-01 9543
## 9 S4248SM144NCEN 2007-09-01 8123
## 10 S4248SM144NCEN 2007-10-01 9649
## # ℹ 110 more rows
We can quickly visualize using the ggplot2
package. We
can see that there appears to be some seasonality and an upward
trend.
alcohol_sales_tbl %>%
ggplot(aes(x = date, y = price)) +
geom_line(linewidth = 1, color = palette_light()[[1]]) +
geom_smooth(method = "loess") +
labs(title = "US Alcohol Sales: Monthly", x = "", y = "Millions") +
scale_y_continuous(labels = scales::dollar) +
scale_x_date(date_breaks = "1 year", date_labels = "%Y") +
theme_tq()
## `geom_smooth()` using formula = 'y ~ x'
The forecasting workflow involves a few basic steps:
ts
object class.sw_sweep()
to tidy the forecast.Note that we purposely omit other steps such as testing the
series for stationarity (Box.test(type = "Ljung")
) and
analysis of autocorrelations (Acf
, Pacf
) for
brevity purposes. We recommend the analyst to follow the forecasting
workflow in “Forecasting: principles
and practice”
ts
object classThe forecast
package uses the ts
data
structure, which is quite a bit different than tibbles that we are
currently using. Fortunately, it’s easy to get to the correct structure
with tk_ts()
from the timetk
package. The
start
and freq
variables are required for the
regularized time series (ts
) class, and these specify how
to treat the time series. For monthly, the frequency should be specified
as 12. This results in a nice calendar view. The
silent = TRUE
tells the tk_ts()
function to
skip the warning notifying us that the “date” column is being dropped.
Non-numeric columns must be dropped for ts
class, which is
matrix based and a homogeneous data class.
alcohol_sales_ts <- tk_ts(alcohol_sales_tbl, start = 2007, freq = 12, silent = TRUE)
alcohol_sales_ts
## Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
## 2007 6627 6743 8195 7828 9570 9484 8608 9543 8123 9649 9390 10065
## 2008 7093 7483 8365 8895 9794 9977 9553 9375 9225 9948 8758 10839
## 2009 7266 7578 8688 9162 9369 10167 9507 8923 9272 9075 8949 10843
## 2010 6558 7481 9475 9424 9351 10552 9077 9273 9420 9413 9866 11455
## 2011 6901 8014 9832 9281 9967 11344 9106 10469 10085 9612 10328 11483
## 2012 7486 8641 9709 9423 11342 11274 9845 11163 9532 10754 10953 11922
## 2013 8384 8871 10085 10462 12177 11342 11138 11409 10441 11479 11077 12636
## 2014 8505 9003 9991 10903 11708 11814 10875 10885 10726 11698 10353 13153
## 2015 8280 8927 10557 10933 11330 12708 11700 11078 11882 11865 11419 14100
## 2016 8556 10198 11948 11252 12046 13454 10754 12465 12038 11674 12761 14140
A significant benefit is that the resulting ts
object
maintains a “timetk index”, which will help with forecasting dates
later. We can verify this using has_timetk_idx()
from the
timetk
package.
## [1] TRUE
Now that a time series has been coerced, let’s proceed with modeling.
The modeling workflow takes a time series object and applies a model.
Nothing new here: we’ll simply use the ets()
function from
the forecast
package to get an Exponential Smoothing ETS
(Error, Trend, Seasonal) model.
Where sweep
can help is in the evaluation of a model.
Expanding on the broom
package there are four
functions:
sw_tidy()
: Returns a tibble of model parameterssw_glance()
: Returns the model accuracy
measurementssw_augment()
: Returns the fitted and residuals of the
modelsw_tidy_decomp()
: Returns a tidy decomposition from a
modelThe guide below shows which model object compatibility with
sweep
tidier functions.
Object | sw_tidy() | sw_glance() | sw_augment() | sw_tidy_decomp() | sw_sweep() |
---|---|---|---|---|---|
ar | |||||
arima | X | X | X | ||
Arima | X | X | X | ||
ets | X | X | X | X | |
baggedETS | |||||
bats | X | X | X | X | |
tbats | X | X | X | X | |
nnetar | X | X | X | ||
stl | X | ||||
HoltWinters | X | X | X | X | |
StructTS | X | X | X | X | |
tslm | X | X | X | ||
decompose | X | ||||
adf.test | X | X | |||
Box.test | X | X | |||
kpss.test | X | X | |||
forecast | X |
Going through the tidiers, we can get useful model
information.
sw_tidy()
returns the model parameters.
## # A tibble: 17 × 2
## term estimate
## <chr> <dbl>
## 1 alpha 0.148
## 2 beta 0.0164
## 3 gamma 0.000187
## 4 phi 0.974
## 5 l 8389.
## 6 b 39.1
## 7 s0 1.18
## 8 s1 1.02
## 9 s2 1.04
## 10 s3 0.994
## 11 s4 1.04
## 12 s5 0.996
## 13 s6 1.12
## 14 s7 1.07
## 15 s8 0.979
## 16 s9 0.975
## 17 s10 0.836
sw_glance()
returns the model quality parameters.
## # A tibble: 1 × 12
## model.desc sigma logLik AIC BIC ME RMSE MAE MPE MAPE MASE
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 ETS(M,Ad,M) 0.0458 -1012. 2060. 2110. 39.1 430. 356. 0.212 3.52 0.702
## # ℹ 1 more variable: ACF1 <dbl>
sw_augment()
returns the actual, fitted and residual
values.
## # A tibble: 120 × 4
## index .actual .fitted .resid
## <yearmon> <dbl> <dbl> <dbl>
## 1 Jan 2007 6627 6444. 0.0284
## 2 Feb 2007 6743 7107. -0.0512
## 3 Mar 2007 8195 8256. -0.00739
## 4 Apr 2007 7828 8318. -0.0589
## 5 May 2007 9570 9010. 0.0622
## 6 Jun 2007 9484 9538. -0.00563
## 7 Jul 2007 8608 8540. 0.00800
## 8 Aug 2007 9543 8923. 0.0695
## 9 Sep 2007 8123 8687. -0.0649
## 10 Oct 2007 9649 9005. 0.0716
## # ℹ 110 more rows
We can review the residuals to determine if their are any underlying
patterns left. Note that the index is class yearmon
, which
is a regularized date format.
augment_fit_ets %>%
ggplot(aes(x = index, y = .resid)) +
geom_hline(yintercept = 0, color = "grey40") +
geom_point(color = palette_light()[[1]], alpha = 0.5) +
geom_smooth(method = "loess") +
scale_x_yearmon(n = 10) +
labs(title = "US Alcohol Sales: ETS Residuals", x = "") +
theme_tq()
## `geom_smooth()` using formula = 'y ~ x'
sw_tidy_decomp()
returns the decomposition of the ETS
model.
## # A tibble: 121 × 5
## index observed level slope season
## <yearmon> <dbl> <dbl> <dbl> <dbl>
## 1 Dec 2006 NA 8389. 39.1 1.18
## 2 Jan 2007 6627 8462. 42.0 0.765
## 3 Feb 2007 6743 8439. 33.7 0.836
## 4 Mar 2007 8195 8462. 31.8 0.975
## 5 Apr 2007 7828 8419. 22.8 0.979
## 6 May 2007 9570 8519. 30.8 1.07
## 7 Jun 2007 9484 8542. 29.2 1.12
## 8 Jul 2007 8608 8581. 29.6 0.996
## 9 Aug 2007 9543 8698. 38.6 1.04
## 10 Sep 2007 8123 8652. 28.3 0.994
## # ℹ 111 more rows
We can review the decomposition using ggplot2
as well.
The data will need to be manipulated slightly for the facet
visualization. The gather()
function from the
tidyr
package is used to reshape the data into a long
format data frame with column names “key” and “value” indicating all
columns except for index are to be reshaped. The “key” column is then
mutated using mutate()
to a factor which preserves the
order of the keys so “observed” comes first when plotting.
decomp_fit_ets %>%
tidyr::gather(key = key, value = value, -index) %>%
dplyr::mutate(key = as.factor(key)) %>%
ggplot(aes(x = index, y = value, group = key)) +
geom_line(color = palette_light()[[2]]) +
geom_ma(ma_fun = SMA, n = 12, size = 1) +
facet_wrap(~ key, scales = "free_y") +
scale_x_yearmon(n = 10) +
labs(title = "US Alcohol Sales: ETS Decomposition", x = "") +
theme_tq() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
## Warning: Removed 1 row containing missing values or values outside the scale range
## (`geom_line()`).
Under normal circumstances it would make sense to refine the model at this point. However, in the interest of showing capabilities (rather than how to forecast) we move onto forecasting the model. For more information on how to forecast, please refer to the online book “Forecasting: principles and practices”.
Next we forecast the ETS model using the forecast()
function. The returned forecast
object isn’t in a “tidy”
format (i.e. data frame). This is where the sw_sweep()
function helps.
We’ll use the sw_sweep()
function to coerce a
forecast
into a “tidy” data frame. The
sw_sweep()
function then coerces the forecast
object into a tibble that can be sent to ggplot
for
visualization. Let’s inspect the result.
## # A tibble: 252 × 7
## index key price lo.80 lo.95 hi.80 hi.95
## <yearmon> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Jan 2007 actual 6627 NA NA NA NA
## 2 Feb 2007 actual 6743 NA NA NA NA
## 3 Mar 2007 actual 8195 NA NA NA NA
## 4 Apr 2007 actual 7828 NA NA NA NA
## 5 May 2007 actual 9570 NA NA NA NA
## 6 Jun 2007 actual 9484 NA NA NA NA
## 7 Jul 2007 actual 8608 NA NA NA NA
## 8 Aug 2007 actual 9543 NA NA NA NA
## 9 Sep 2007 actual 8123 NA NA NA NA
## 10 Oct 2007 actual 9649 NA NA NA NA
## # ℹ 242 more rows
The tibble returned contains “index”, “key” and “value” (or in this
case “price”) columns in a long or “tidy” format that is ideal for
visualization with ggplot2
. The “index” is in a regularized
format (in this case yearmon
) because the
forecast
package uses ts
objects. We’ll see
how we can get back to the original irregularized format (in this case
date
) later. The “key” and “price” columns contains three
groups of key-value pairs:
ets()
function (excluded by default)forecast()
functionThe sw_sweep()
function contains an argument
fitted = FALSE
by default meaning that the model “fitted”
values are not returned. We can toggle this on if desired. The remaining
columns are the forecast confidence intervals (typically 80 and 95, but
this can be changed with forecast(level = c(80, 95))
).
These columns are setup in a wide format to enable using the
geom_ribbon()
.
Let’s visualize the forecast with ggplot2
. We’ll use a
combination of geom_line()
and geom_ribbon()
.
The fitted values are toggled off by default to reduce the complexity of
the plot, but these can be added if desired. Note that because we are
using a regular time index of the yearmon
class, we need to
add scale_x_yearmon()
.
sw_sweep(fcast_ets) %>%
ggplot(aes(x = index, y = price, color = key)) +
geom_ribbon(aes(ymin = lo.95, ymax = hi.95),
fill = "#D5DBFF", color = NA, linewidth = 0) +
geom_ribbon(aes(ymin = lo.80, ymax = hi.80, fill = key),
fill = "#596DD5", color = NA, linewidth = 0, alpha = 0.8) +
geom_line(linewidth = 1) +
labs(title = "US Alcohol Sales, ETS Model Forecast", x = "", y = "Millions",
subtitle = "Regular Time Index") +
scale_y_continuous(labels = scales::label_dollar()) +
scale_x_yearmon(n = 12, format = "%Y") +
scale_color_tq() +
scale_fill_tq() +
theme_tq()
Because the ts
object was created with the
tk_ts()
function, it contained a timetk index that was
carried with it throughout the forecasting workflow. As a result, we can
use the timetk_idx
argument, which maps the original
irregular index (dates) and a generated future index to the regularized
time series (yearmon). This results in the ability to return an index of
date and datetime, which is not currently possible with the
forecast
objects. Notice that the index is returned as
date
class.
## Warning in .check_tzones(e1, e2): 'tzone' attributes are inconsistent
## # A tibble: 6 × 7
## index key price lo.80 lo.95 hi.80 hi.95
## <date> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2007-01-01 actual 6627 NA NA NA NA
## 2 2007-02-01 actual 6743 NA NA NA NA
## 3 2007-03-01 actual 8195 NA NA NA NA
## 4 2007-04-01 actual 7828 NA NA NA NA
## 5 2007-05-01 actual 9570 NA NA NA NA
## 6 2007-06-01 actual 9484 NA NA NA NA
## Warning in .check_tzones(e1, e2): 'tzone' attributes are inconsistent
## # A tibble: 6 × 7
## index key price lo.80 lo.95 hi.80 hi.95
## <date> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2017-07-01 forecast 12154. 11359. 10937. 12950. 13371.
## 2 2017-08-01 forecast 12676. 11825. 11375. 13526. 13976.
## 3 2017-09-01 forecast 12193. 11353. 10909. 13032. 13476.
## 4 2017-10-01 forecast 12752. 11850. 11373. 13654. 14131.
## 5 2017-11-01 forecast 12580. 11666. 11182. 13495. 13979.
## 6 2017-12-01 forecast 14534. 13447. 12871. 15621. 16196.
We can build the same plot with dates in the x-axis now.
sw_sweep(fcast_ets, timetk_idx = TRUE) %>%
ggplot(aes(x = index, y = price, color = key)) +
geom_ribbon(aes(ymin = lo.95, ymax = hi.95),
fill = "#D5DBFF", color = NA, linewidth = 0) +
geom_ribbon(aes(ymin = lo.80, ymax = hi.80, fill = key),
fill = "#596DD5", color = NA, linewidth = 0, alpha = 0.8) +
geom_line(linewidth = 1) +
labs(title = "US Alcohol Sales, ETS Model Forecast", x = "", y = "Millions",
subtitle = "Irregular Time Index") +
scale_y_continuous(labels = scales::dollar) +
scale_x_date(date_breaks = "1 year", date_labels = "%Y") +
scale_color_tq() +
scale_fill_tq() +
theme_tq()
## Warning in .check_tzones(e1, e2): 'tzone' attributes are inconsistent
In this example, there is not much benefit to returning an irregular time series. However, when working with frequencies below monthly, the ability to return irregular index values becomes more apparent.
This was an overview of how various functions within the
sweep
package can be used to assist in forecast analysis.
In the next vignette, we discuss some more powerful concepts including
forecasting at scale with grouped time series analysis.